skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hughes, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 12, 2026
  2. Aim: With the widespread adoption of disk encryption technologies, it has become common for adversaries to employ coercive tactics to force users to surrender encryption keys. For some users, this creates a need for hidden volumes that provide plausible deniability, the ability to deny the existence of sensitive information. Previous deniable storage solutions only offer pieces of an implementable solution that do not take into account more advanced adversaries, such as intelligence agencies, and operational concerns. Specifically, they do not address an adversary that is familiar with the design characteristics of any deniable system. Methods: We evaluated existing threat models and deniable storage system designs to produce a new, stronger threat model and identified design characteristics necessary in a plausibly deniable storage system. To better explore the implications of this stronger adversary, we developed Artifice, the first tunable, operationally secure, self repairing, and fully deniable storage system. Results: With Artifice, hidden data blocks are split with an information dispersal algorithm such as Shamir Secret Sharing to produce a set of obfuscated carrier blocks that are indistinguishable from other pseudorandom blocks on the disk. The blocks are then stored in unallocated space of an existing file system. The erasure correcting capabilities of an information dispersal algorithm allow Artifice to self repair damage caused by writes to the public file system. Unlike preceding systems, Artifice addresses problems regarding flash storage devices and multiple snapshot attacks through simple block allocation schemes and operational security measures. To hide the user’s ability to run a deniable system and prevent information leakage, a user accesses Artifice through a separate OS stored on an external Linux live disk. Conclusion: In this paper, we present a stronger adversary model and show that our proposed design addresses the primary weaknesses of existing approaches to deniable storage under this stronger assumed adversary. 
    more » « less
  3. Background Many public health departments use record linkage between surveillance data and external data sources to inform public health interventions. However, little guidance is available to inform these activities, and many health departments rely on deterministic algorithms that may miss many true matches. In the context of public health action, these missed matches lead to missed opportunities to deliver interventions and may exacerbate existing health inequities. Objective This study aimed to compare the performance of record linkage algorithms commonly used in public health practice. Methods We compared five deterministic (exact, Stenger, Ocampo 1, Ocampo 2, and Bosh) and two probabilistic record linkage algorithms (fastLink and beta record linkage [BRL]) using simulations and a real-world scenario. We simulated pairs of datasets with varying numbers of errors per record and the number of matching records between the two datasets (ie, overlap). We matched the datasets using each algorithm and calculated their recall (ie, sensitivity, the proportion of true matches identified by the algorithm) and precision (ie, positive predictive value, the proportion of matches identified by the algorithm that were true matches). We estimated the average computation time by performing a match with each algorithm 20 times while varying the size of the datasets being matched. In a real-world scenario, HIV and sexually transmitted disease surveillance data from King County, Washington, were matched to identify people living with HIV who had a syphilis diagnosis in 2017. We calculated the recall and precision of each algorithm compared with a composite standard based on the agreement in matching decisions across all the algorithms and manual review. Results In simulations, BRL and fastLink maintained a high recall at nearly all data quality levels, while being comparable with deterministic algorithms in terms of precision. Deterministic algorithms typically failed to identify matches in scenarios with low data quality. All the deterministic algorithms had a shorter average computation time than the probabilistic algorithms. BRL had the slowest overall computation time (14 min when both datasets contained 2000 records). In the real-world scenario, BRL had the lowest trade-off between recall (309/309, 100.0%) and precision (309/312, 99.0%). Conclusions Probabilistic record linkage algorithms maximize the number of true matches identified, reducing gaps in the coverage of interventions and maximizing the reach of public health action. 
    more » « less
  4. Abstract Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current‐voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter‐laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)3halide perovskite thin‐film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance‐free JV‐curve with a potential power conversion efficiency of 24.6 %. For grainsizes above ≈20 nm, intra‐grain charge transport is characterized by terahertz sum mobilities of ≈32 cm2V−1s−1. Drift‐diffusion simulations indicate that these intra‐grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best‐realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented. 
    more » « less